Triterpenoids from the Roots of *Camellia oleifera* C.ABEL and Their Cytotoxic Activities

by Shou-Li Wang^a), Zhong Chen^b), Xiao-Jing Tong^b), Yan-Li Liu^b), Xia Li^b), Qiong-Ming Xu^{*b}), Xiao-Ran Li^b), and Shi-Lin Yang^b)

 ^a) College of Medicine, Soochow University, Suzhou 215123, P. R. China
^b) College of Pharmaceutical Science, Soochow University, Suzhou 215123, P. R. China (phone: +86-512-69561421; fax: +86-512-65882089; e-mail: xuqiongming@suda.edu.cn)

Three new triterpenoids, 21β , 22α -diangeloyloxy- 3β , 15α , 16α ,28-tetrahydroxyolean-12-en-23-al (1), 21β -angeloyloxy- 3β , 15α , 16α ,28-tetrahydroxy- 22α -(2-methylbutanoyloxy)olean-12-en-23-al (2), and 21β -angeloyloxy- 3β , 16α ,28-trihydroxy- 22α -(2-methylbutanoyloxy)olean-12-en-23-al (3), along with six known triterpenoids, were isolated from the roots of *Camellia oleifera* C.ABEL. The structures of compounds 1-3 were elucidated on the basis of spectroscopic analyses. Moreover, all compounds isolated were evaluated for their cytotoxic activities by MTT (= 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay.

Introduction. - Camellia oleifera C.ABEL has been grown as an oil crop in many countries including China, Brazil, Philippines, India, and South Korea. The roots of C. oleifera is also well-known as traditional Chinese medicine used for treatment of common cold, bovillae, ardent fever, urinary tract infection, nephritis, edema, unpeaceful quickening, and threatened abortion [1]. Previous studies on constituents from the *Camellia* genus led to the isolation of different compounds such as flavones, triterpenoids, and its glycosides [2][3]. During the course of our investigation for cytotoxic agents from the EtOH extract of the roots of C. oleifera, three new triterpenoids, 21β , 22α -diangeloyloxy- 3β , 15α , 16α , 28-tetrahydroxyolean-12-en-23-al 21β -angeloyloxy- 3β , 15α , 16α , 28-tetrahydroxy- 22α -(2-methylbutanoyloxy)olean-(1), 12-en-23-al (2), 21β -angeloyloxy- 3β , 16α , 28-trihydroxy- 22α -(2-methylbutanoyloxy)olean-12-en-23-al (3), were isolated from the roots of C. oleifera, along with six known triterpenoids, 21β , 22α -diangeloyloxy- 3β , 16α , 28-trihydroxyolean-12-en-23-al (4) [4], 21β , 22α -diangeloyloxy- 3β , 15α , 16α , 28-tetrahydroxyolean-12-ene (5) [5], 21β angeloyloxy- 3β , 15α , 16α , 28-tetrahydroxy- 22α -(2-methylbutanoyloxy)olean-12-ene (6) [6], 21β , 22α -diangeloyloxy- 3β , 16α , 28-trihydroxyolean-12-ene (7) [7], 21β -angeloyl- $0xy-3\beta$, 16a, 28-trihydroxy-22a-(2-methylbutanoyloxy)olean-12-ene (8) [8], and 22aangeloyloxy- 3β , 15α , 16α , 28-tetrahydroxyolean-12-ene (9) [9] (Fig. 1). Herein, we report the isolation and structure elucidation of the new compounds 1-3, as well as their cytotoxic activities.

Results and Discussion. – Compound **1** was isolated as a white powder. Its molecular formula was deduced as $C_{40}H_{60}O_9$ on the basis of the positive-ion-mode HR-ESI-MS, m/z 707.4113 ($[M + Na]^+$) and a comprehensive analysis of the NMR data.

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of compounds 1-9

The IR spectrum indicated the presence of OH groups (3452 cm^{-1}), an CHO group (2818, 2719, 1739 cm⁻¹), and two α,β -unsaturated ester C=O groups (1605 and 1602 cm⁻¹). The ¹³C-NMR spectrum (*Table 1*) exhibited resonances for 40 C-atoms, substitution patterns of which were deduced from DEPT and HSQC experiments as ten Me, seven CH_2 , and eleven CH groups, and twelve quaternary C-atoms. It showed signals of five O–CH C-atoms at δ (C) 72.1, 67.6, 72.0, 78.5, and 73.4, corresponding to C(3), C(15), C(16), C(21), and C(22), respectively, as well as one OCH₂ signal at $\delta(C)$ 63.2, corresponding to C(28) and one CHO signal at δ (C) 208.4, corresponding to C(23). The ¹H-NMR spectrum (*Table 1*) displayed six signals at δ (H) 1.48 (s, 3 H), 1.09 (s, 3 H), 1.08 (s, 3 H), 1.01 (s, 3 H), 0.98 (s, 3 H), and 0.92 (s, 3 H), which were assigned to six tertiary Me groups. An olefinic H-atom signal at $\delta(H)$ 5.51 (t, J = 4.0, H-C(12)), a CH signal at $\delta(H)$ 3.70 (*dd*, J = 11.0, 4.5, H-C(3)), an CHO signal at $\delta(H)$ 9.42 (s, H–C(23)), and signals of a CH₂–O group at δ (H) 3.30, 2.99 (2d, J=12.0, CH₂(28)) suggested that compound **1** belongs to the olean-12-ene-type pentacyclic triterpene family. Its ¹H-NMR spectrum also exhibited signals of two angeloyl (=2-methylbut-2enoyl; Ang) groups at δ (H) (6.05 (dq, J = 7.0, 1.5, H – C(3'), 21-O-Ang), 1.94 (d, J = 7.0, 1.5, H – C(3'), 1.5, Me(4'), 21-O-Ang), 1.83 (d, J = 1.5, Me(5'), 21-O-Ang)), and 6.08 (dq, J = 7.0, 1.5, 1 H, 22-O-Ang-3"), 1.94 (d, J = 7.0, Me(4"), 22-O-Ang), 1.83 (d, J = 1.5, Me(5"), 22-O-Ang)). The two AngO groups were located at C(21) and C(22) on the basis of the downfield shifts of H–C(21) at δ (H) 5.87 (d, J=10.5) and H–C(22) at δ (H) 5.44 (d, J=10.5), which was supported by the correlation between $\delta(H)$ 5.87 (d, J=10.5, H–C(21)) and δ (C) 168.9 (C(1')21-O-Ang), as well as the correlation between δ (H) 5.44 (d, J = 10.5, H–C(22)) and δ (C) 169.8 (C(1'')22-O-Ang) in the HMBC spectrum (Fig. 2).

The relative configuration of compound **1** was established from its NOESY spectrum (*Fig. 3*). The cross-peaks between H–C(21) (δ (H) 5.87) and Me(29) (δ (H) 0.92), as well as those between H–C(22) (5.44) and Me(30) (1.09), and CH₂(28) (3.30 and 2.99), suggested that H–C(21) and H–C(22) are α - and β -oriented, respectively. The H–C(15) (δ (H) 3.76) correlated with CH₂(28) (3.30 and 2.99) and H–C(18) (2.65), indicating that the 15-OH group is α -configured. In addition, the small coupling constant (J(15,16) = 4.5) suggested that H–C(15) is axial and H–C(16) is equatorial.

Position	1		2		3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
1	1.69 - 1.72 (m),	39.1	1.71 - 1.74 (m),	38.3	1.75 - 1.76 (m),	38.2
	1.08 - 1.10 (m)		1.05 - 1.09 (m)		1.09 - 1.13(m)	
2	1.71 - 1.75(m),	26.4	1.71 - 1.73 (m),	26.1	1.71 - 1.74 (m),	26.2
	1.10 - 1.25(m)		1.68 - 1.70 (m)		1.64 - 1.66 (m)	
3	3.70 (dd, J = 11.0, 4.5)	72.1	3.70 (dd, J = 11.0, 4.5)	71.7	3.82 (dd, J = 11.0, 4.5)	71.9
4		56.2		55.1		55.2
5	0.78 (d, J = 10.5)	48.5	0.78 (d, J = 10.5)	48.2	0.78 (d, J = 10.5)	48.2
6	1.42 - 1.61 (m).	20.6	1.53 - 1.57 (m).	20.9	1.57 - 1.59 (m).	20.7
	1.10 - 1.25 (m)		1.14 - 1.26 (m)		1.15 - 1.26 (m)	
7	1.74 - 1.77 (m).	35.7	1.75 - 1.77 (m).	35.8	1.71 - 1.74 (m).	32.2
	1.63 - 1.67 (m)		1.63 - 1.66 (m)		1.59 - 1.61 (m)	
8		40.7	()	41.3		40.1
9	1.26 (d, J = 12.5)	47.3	1.26 (d, J = 12.5)	47.1	1.26 (d, J = 12.5)	46.5
10		36.5		35.9		35.9
11	1.92 - 1.95 (m).	24.2	1.86 - 1.93 (m).	23.6	1.86 - 1.99 (m).	23.5
	1.41 - 1.63 (m)		1.42 - 1.53 (m)		1.42 - 1.53 (m)	
12	5.51 (t, I=4.0)	126.3	5.53 (t, I = 4.0)	125.9	5.46 (t, I=4.0)	124.4
13		142.5		141.6		140.9
14		48.1		47.9		41.2
15	3.76(d, I=4.5)	67.6	3.72 (d, I=4.5)	67.5	1.66 - 1.68 (m)	33.6
10	5170 (u, v 110)	0,10	0112 (u, v 110)	0,10	1.35 - 1.40 (m)	0010
16	3.78(d, I=4.5)	72	3.74 (d, I = 4.5)	73.4	3.94 (t, I=4.0)	69.6
17	5.70 (u, v = 1.5)	477	5.71(u, v = 1.5)	46.6	5.5 + (t, v = 1.0)	47.8
18	2.65 (dd I = 14.0.4.0)	40.7	2.71 (dd I = 14.0.4.0)	39.8	2.72 (dd I = 14.0.4.0)	39.3
19	1.98 - 2.60 (m)	47.3	2.52 - 2.90 (m)	45.9	2.52 - 2.90 (m)	46.4
	1.75 - 1.77 (m)	1,10	1.75 - 1.78 (m)	1015	1.75 - 1.77 (m)	
20		36.3	11/0 11/0 (11)	35.3	11/0 11/7 (11)	35.8
21	5.87 (d, I = 10.5)	78.5	5.76 (d, I = 10.5)	77.3	5.82 (d, I = 10.5)	77.3
21	5.67 (d, J = 10.5) 5 44 (d, $I = 10.5$)	73.4	5.70 (d, J = 10.5) 5.32 (d, $I = 10.5$)	73.3	5.62 (d, J = 10.5) 5 41 (d $J = 10.5$)	73.2
23	9.42(s)	208.4	9.41(s)	207	9.42(s)	207.1
23	1.08(s)	93	1.08(s)	9	1.08(s)	9
25	1.00(s) 1.01(s)	16.4	1.00(s)	15.8	1.00(s)	159
26	0.98(s)	17.6	0.98(s)	17.2	0.92(s)	16.8
20	1.48(s)	21.4	1.42(s)	20.3	1.48(s)	27.1
28	3 30 (d I = 12.0)	63.2	3.28 (d I = 12.0)	62.6	3.26 (d I = 12.0)	63.6
20	2.99 (d, J = 12.0),	00.2	2.93 (d I = 12.0),	02.0	2.98 (d, J = 12.0),	00.0
29	0.92 (s)	29.5	0.92 (s)	28.9	0.94(s)	29
30	1.09(s)	20	1.09(s)	19.5	1.09(s)	19.6
1'	1.05 (3)	168.9	1.09 (3)	168.9	1.09 (3)	167.4
1 2'		127.8		127.8		127.4
2'	6.05 (da I = 7.0, 1.5)	140.2	613(da I = 70.15)	140.2	6.01 (da I = 7.0, 1.5)	127.4
3 4'	1.04 (d I - 7.0)	140.2	1.03 (d I - 7.0)	16.1	1.06 (d I - 7.0)	159.2
+ 5'	1.94 (a, J = 7.0) 1.83 (d, $J = 1.5$)	20.0	1.93 (d, J = 1.0) 1.83 (d, $J = 1.5$)	20.0	1.90(a, J = 7.0) 1.86(d, $I = 1.5$)	20.7
J 1″	1.05(u, J - 1.5)	160.9	1.05(a, J - 1.5)	178.7	1.00(a, J - 1.5)	178.8
1 2''		128.4	232, 255 (m, 1 H)	113	232 236 (m 1 H)	110.0
∠ 3″	6.08 (da I = 7.0.15)	120.4	2.55 - 2.55 (m, 111) 1 59 - 1 62 (m)	76.6	2.33 - 2.30 (m, 1.11) 1.61 - 1.64 (m)	+1.1 26.7
5	(uq, s = 7.0, 1.3)	137.1	1.57 = 1.02 (m), 1.15 = 1.26 (m)	20.0	1.01 = 1.07 (m), 1.15 = 1.26 (m)	20.7
4''	1.94 (d I = 7.0)	16.1	0.86(t I = 7.5)	11 0	0.86(t I = 7.5)	11 9
	1.57 (a, J = 7.0) 1.83 (d I = 1.5)	20.0	1.05 (d, J = 7.3)	16.4	104 (d I - 67)	16.5
5	(u, j - 1.5)	20.9	1.05(u, J - 0.7)	10.4	(u, J = 0.7)	10.5

Table 1. ¹*H*- and ¹³*C*-*NMR* (500 and 125 MHz, resp.) *Data of Compounds* **1**–**3**. In CDCl₃; δ in ppm, *J* in Hz. For atom numbering, *cf. Fig.* 2.

Fig. 2. Key HMBCs of compounds 1-3

The CHO group was established at position 23, which was confirmed by the correlation between H–C(23) at $\delta(H)$ 9.42 (*s*, 1 H) and C(3) at $\delta(C)$ 72.1 in the HMBC spectrum (*Fig.* 2), and the correlation between H–C(3) at $\delta(H)$ 3.70 (*dd*, *J* = 11.0, 4.5) and H–C(23) at $\delta(H)$ 9.42 (*s*, 1 H), as well as the correlation between Me(24) at $\delta(H)$ 1.08 (*s*) and Me(25) at $\delta(H)$ 1.01 (*s*) in the NOESY spectrum (*Fig.* 3). Thus, the structure of compound **1** was elucidated as 21β , 22α -diangeloyloxy- 3β , 15α , 16α ,28-tetrahydroxyolean-12-en-23-al.

Compound **2** was also obtained as a white powder. Its molecular formula was deduced as $C_{40}H_{62}O_9$ on the basis of the positive-ion-mode HR-ESI-MS (m/z 709.4270 ($[M + Na]^+$)) and the comprehensive analysis of the NMR data. The IR spectrum indicated the presence of OH groups (3475 cm⁻¹), an CHO group (2820, 2719, 1742 cm⁻¹), a C=O group (1720 cm⁻¹), and an α,β -unsaturated ester C=O group (1600 cm⁻¹). Compound **2** has a similar structure as compound **1**, which was confirmed by comparison of their ¹H- and ¹³C-NMR spectra, the main differences arising from the signals at $\delta(C)$ 178.7, 41.3, 26.6, 11.8, and 16.4 due to a 2-methylbutanoyl (MB) group in compound **2**. The angeloyl group is located at C(21) on the basis of the downfield shifts of C(21) at $\delta(C)$ 77.3, which was supported by the correlation between $\delta(H)$ 5.76 (d, J = 10.5, H–C(21)) and $\delta(C)$ 168.9 (C(1'), 21-O-Ang) in the HMBC spectrum (*Fig. 2*). On the other hand, the 2-MBO group was established at C(22) on the basis of the downfield shift of C(22) at $\delta(C)$ 73.3, which was supported by the correlation between $\delta(H)$ 5.32 (d, J = 10.5, H–C(22)) and $\delta(C)$ 178.7 (C(1''), 22-O-MB) in the HMBC spectrum (*Fig. 2*).

Fig. 3. Key NOESY correlations of compounds 1-3

The relative configuration of compound **2** was further substantiated by its NOESY spectrum (*Fig. 3*). The cross-peaks between H–C(21) (δ (H) 5.76) and Me(29) (0.92), as well as between H–C(22) (5.32) and Me(30) (1.09), and CH₂(28) (3.28 and 2.93), indicated that H–C(21) and H–C(22) are α - and β -oriented, respectively. The H–C(15) (δ (H) 3.72) correlated with CH₂(28) (3.28 and 2.93), indicating that the 15-OH group is α -configured. In addition, the small coupling constant (J(15,16) = 4.5) suggested that H–C(15) is axial and H–C(16) is equatorial. Thus, the structure of compound **2** was elucidated as 21β -angeloyloxy- 3β , 15α , 16α , 28-tetrahydroxy- 22α -(2-methylbutanoyloxy)olean-12-en-23-al.

Compound **3** was also obtained as a white powder. Its molecular formula was deduced as $C_{40}H_{62}O_8$ on the basis of the positive-ion-mode HR-ESI-MS (m/z 693.4316

 $([M + Na]^+))$ and the comprehensive analysis of the NMR data. The IR spectrum indicated the presence of OH groups (3450 cm⁻¹), an CHO group (2820, 2720, 1738 cm⁻¹), a C=O group (1722 cm⁻¹), and an α_{β} -unsaturated ester C=O groups (1603 cm⁻¹). Compound **3** had a similar structure as compound **4**, which was confirmed by comparison of their ¹H- and ¹³C-NMR spectra, the main difference again arising from the presence of a 2-MB group in compound **3**. The AngO group was placed at C(21) on the basis of the downfield shifts of C(21) at δ (C) 77.3, which was supported by the correlation between δ (H) 5.82 (d, J = 10.5, H-C(21)) and δ (C) 167.4 (C(1'), 21-O-Ang) in the HMBC spectrum (*Fig.* 2). The 2-MBO group was established at C(22) on the basis of the downfield shifts of C(22) at δ (C) 73.2, which was supported by the correlation between δ (H) 5.41 (d, J = 10.5, H-C(22)) and δ (C) 178.8 (C(1''), 22-O-MB-1'') in the HMBC spectrum (*Fig.* 2).

The relative configuration of compound **3** was further substantiated by its NOESY spectrum (*Fig. 3*). The cross-peaks between H–C(21) (δ (H) 5.82) and Me(29) (0.94), as well as between H–C(22) (5.41) and Me(30) (1.09), and CH₂(28) (3.26 and 2.98), suggested that H–C(21) and H–C(22) are α - and β -oriented, respectively. The H–C(16) (δ (H) 3.94) correlated with CH₂(28) (3.26 and 2.98) and H–C(18) (2.72), indicating that the 16-OH group is α -configured. Thus, the structure of compound **3** was elucidated as 21 β -angeloyloxy-3 β ,16 α ,28-trihydroxy-22 α -(2-methylbutanoyloxy)olean-12-en-23-al.

Cytotoxic activities of the isolated compounds 1-9 were tested by MTT (= 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide) assay *in vitro* and expressed as IC_{50} values. They all exhibited moderate cytotoxic activities against human HeLa, SMMC-7721, and HL-60 tumor cell lines, with IC_{50} values ranging from 25.77 to 44.38 μ M (*Table 2*). Preliminary analysis of the structure–activity relationship of these natural triterpenoids revealed that compounds **1**, **4**, and **7** with 21β , 22α -diangeloyloxy groups, exhibited slightly increased cytotoxic activities. Our results suggested that triterpenoids might be, at least in part, responsible for the proposed therapeutic effect of the roots of *C. oleifera*.

Compound	<i>IC</i> ₅₀ [µм]	ІС ₅₀ [µм]				
	HeLa	SMMC-7721	HL-60			
1	25.77 ± 2.35	28.55 ± 2.18	27.02 ± 2.36			
2	32.53 ± 2.20	31.09 ± 2.85	31.24 ± 2.72			
3	33.17 ± 2.62	36.26 ± 1.98	38.37 ± 2.56			
4	27.48 ± 2.82	27.40 ± 2.19	26.85 ± 3.02			
5	40.70 ± 2.76	44.38 ± 3.35	40.72 ± 2.89			
6	34.95 ± 3.18	38.57 ± 1.88	36.92 ± 2.72			
7	26.72 ± 2.13	25.94 ± 2.64	26.83 ± 2.30			
8	30.08 ± 2.52	30.18 ± 2.16	32.33 ± 2.88			
9	32.39 ± 2.84	27.93 ± 1.96	30.62 ± 2.66			
Norcantharidin	4.16 ± 0.37	5.23 ± 0.42	3.45 ± 0.26			

Table 2. In vitro Cytotoxic Activities of Triterpenoids 1-9 from the Roots of Camellia oleifera

We are grateful to Prof. Xue-Dong Yang at the Department of Pharmaceutical Science and Technology, Tianjin University, for the HR-ESI-MS recording, and Mrs. Li-Ping Shi at the

Instrumentation Center of Shanghai Institute of Organic Chemisty, Chinese Academy of Science for the NMR recordings. This work was funded by the *Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)*.

Experimental Part

General. TLC: Precoated silica gel plates (SiO₂; Qingdao Marine Chemical Factory, Qingdao, China); visualized by 10% H₂SO₄ alcohol soln. Column chromatography (CC): SiO₂ (400–600 mesh; Qingdao Marine Chemical Factory, Qingdao, China). Medium pressure liquid chromatography (MPLC): ODS column (460 mm × 26 mm i.d., *Büchi Borosilikat 4.6*, CH-Flawil). Semi-prep. HPLC: ODS column (250 × 20 mm i.d., 5 µm PRC-ODS column; Shimadzu Co., Ltd.) with a Waters 2996 detector; flow rate, 2 ml/min, and the wavelength for detection, 254 nm. Optical rotation: Perkin-Elmer model 241 polarimeter. IR Spectra: Perkin-Elmer 983G spectrometer; $\tilde{\nu}$ in cm⁻¹. ¹H-, ¹³C-, and 2D-NMR spectra: Varian Inova 500 spectrometer; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Micromass Q-TOF2 spectrometer; in m/z.

Plant Material. The roots of *Camellia oleifera* C.ABEL were collected in Hubei Province of China in November 2006, and identified by *X.-R. L.* of our college. A voucher sample (No. 06-11-06-01) is deposited with the Herbarium of the College of Pharmacy, Soochow University.

Extraction and Isolation. The dried plant material (10 kg) was percolated with 150 l of EtOH. The solvent was subsequently dried under reduced pressure to give the residue, which was partitioned between CHCl₃ and H₂O. The CHCl₃-soluble fraction was further particulated between petroleum ether (PE) and 90% MeOH. The 90% MeOH fraction (26 g) was then subjected to MPLC (SiO₂; PE/AcOEt 10:90, 15:85, 20:80, 25:75, 30:70, 40:60, 50:50, 100:0, each 500 ml, at 5 ml/min) to afford eight fractions, Frs. 1-8. Fr. 2 (500-1000 ml, 303 mg) was isolated by semi-prep. HPLC (PRC-ODS; MeOH/ H_2O 90:10, at 2 ml/min) to yield compounds 21β , 22α -diangeloyloxy- 3β , 16α , 28-trihydroxyolean-12-ene (7; 146 mg; t_R 27.5 min), and 21 β -angeloyloxy-3 β ,16 α ,28-trihydroxy-22 α -(2-methylbutanoyloxy)olean-12ene (8; 125 mg; t_R 29.0 min), Fr. 3 (1000-1500 ml, 186 mg) was submitted to semi-prep. HPLC (PRC-ODS; MeOH/H₂O 90:10, at 2 ml/min) to give 21β-angeloyloxy-3β,16α,28-trihydroxy-22α-(2-methylbutanoyloxy)olean-12-en-23-al (3; 21 mg; t_R 24.0 min) and 21 β ,22 α -diangeloyloxy-3 β ,16 α ,28-trihydroxyolean-12-en-23-al (4; 136 mg; t_R 21.5 min). Fr. 4 (1500-2000 ml, 155 mg) was subjected to semi-prep. HPLC (PRC-ODS column; MeOH/H₂O 85:15, at 2 ml/min) to yield 22α-angeloyloxy-3β,15α,16α,28tetrahydroxyolean-12-ene (9; 111 mg; t_R 25.0 min). Fr. 5 (2000–2500 ml, 274 mg) was separated by to semi-prep. HPLC (RC-ODS; MeOH/H₂O 85:15, at 2 ml/min) to afford 22a-diangeloyloxy- 3β ,15a,16a,28-tetrahydroxyolean-12-ene (5; 168 mg; $t_{\rm R}$ 17.0 min) and 21 β -angeloyloxy-3 β ,15a,16a,28tetrahydroxy-22 α -(2-methylbutanoyloxy)olean-12-ene (6; 26 mg; t_R 19.0 min). Fr. 5 (2500-3000 ml, 61 mg) was purified by semi-prep. HPLC (PRC-ODS; MeOH/H₂O 80:20, at 2 ml/min) to yield 21β ,22 α -diangeloyloxy- 3β ,15 α ,16 α ,28-tetrahydroxyolean-12-en-23-al (1; 35 mg; $t_{\rm R}$ 25.5 min) and 21 β angeloyloxy-3 β ,15 α ,16 α ,28-tetrahydroxy-22 α -(2-methylbutanoyloxy)olean-12-en-23-al (2; 12 mg; $t_{\rm R}$ 27.0 min). The purity of the compounds was determined by anal. HPLC with PDA detection and ranged from 92% (for 2) to 95% (for 5).

 $\begin{array}{l} (3\beta,15\alpha,16\alpha,21\beta,22\alpha)-3,15,16,28-Tetrahydroxy-23-oxoolean-12-ene-21,22-diyl \ (2Z,2'Z)-Bis(2-meth-ylbut-2-enoate) \ (=21\beta,22\alpha-Diangeloyloxy-3\beta,15\alpha,16\alpha,28-tetrahydroxyolean-12-en-23-al; \ \mathbf{1}). \ [\alpha]_{D}^{25}=+16.32 \ (c=0.18, \ \text{MeOH}). \ \text{IR} \ (\text{KBr}): 3452, 2962, 2925, 2855, 2818, 2719, 1739, 1605, 1602, 1462, 1378, 1185, 1040. \ ^{1}\text{H}- \ \text{and} \ ^{13}\text{C-NMR}: \text{see} \ Table 1. \ \text{HR-ESI-MS} \ (\text{pos.}): 707.4113 \ ([M+\text{Na}]^+, \ C_{40}\text{H}_{60}\text{NaO}_{9}^+; \ \text{calc.} 707.4135). \end{array}$

 $(3\beta,15\alpha,16\alpha,21\beta,22\alpha)$ -3,15,16,28-Tetrahydroxy-22-[(2-methylbutanoyl)oxy]-23-oxoolean-12-en-21-yl (2Z)-2-Methylbut-2-enoate (=21\beta-Angeloyl-3\beta,15\alpha,16\alpha,28-tetrahydroxy-22\alpha-(2-methylbutanoyloxy)-olean-12-en-23-al; **2**). [α]_D²⁵ = +18.16 (c = 0.16, MeOH). IR (KBr): 3475, 2960, 2922, 2853, 2820, 2719, 1742, 1720, 1600, 1460, 1375, 1168, 1047. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (pos.): 709.4270 ([M + Na]⁺, C₄₀H₆₂NaO⁺₃; calc. 709.4292).

 $(3\beta,16\alpha,21\beta,22\alpha)$ -3,16,28-Trihydroxy-22-[(2-methylbutanoyl)oxy]-23-oxoolean-12-en-21-yl (2Z)-2-Methylbut-2-enoate (=21 β -Angeloyloxy-3 β ,16 α ,28-trihydroxy-22 α -(2-methylbutanoyloxy)olean-12-en23-al; **3**). $[a]_{D}^{25} = +13.85$ (c = 0.15, MeOH). IR (KBr): 3450, 2958, 2920, 2850, 2820, 2720, 1738, 1722, 1603, 1462, 1381, 1176, 1038. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (pos.): 693.4316 ($[M + Na]^+$, C₄₀H₆₂NaO₈⁺; calc. 693.4342).

Cytotoxic Activity. To evaluate the cytotoxic activities of the triterpenoids from roots of *C. oleifera* against human HeLa, SMMC-7721, and HL-60 tumor cell lines (Cell Bank, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences), MTT (= 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide) colorimetric assay was performed [10]. The amount of formazan was determined by photometry at 570 nm. Cells were placed into 96-well flat-bottomed cultured plates at a concentration of 2×10^5 cells per well in complete RPMI 1640 culture medium. Twenty-four hours after placing, the medium containing foetal calf serum was removed, and test solns. were added to cells at concentrations of 2.5, 5, 10, 20, 50, and 100 μ M. After incubation with drugs for 24 h, MTT soln. was added to the wells, and the plates were incubated at 37° for 4 h. The active control group was treated with norcantharidin (purity >99.0% as determined by PhOLC; *Nanjing Zelang Medical Technology Co., Ltd.*). The amount of formazan was determined by photometry at 540 nm. Results were expressed as percentage of the absorbance in control cells compared to that in the drug-treated cells. The *IC*₅₀ values (50% inhibitory concentrations) of compounds **1–9** were compiled in *Table 2*.

REFERENCES

- [1] T. Takemoto, T. Miyasi, G. Kusano, Phytochemistry 1975, 14, 2534.
- [2] X. F. Cai, X. J. Jin, D. H. Lee, Y. T. Yang, K. Lee, Y. S. Hong, J. H. Lee, J. J. Lee, J. Nat. Prod. 2006, 69, 1095.
- [3] M. L. Oyarzún, J. A. Garbarino, V. Gambaro, J. Guilhema, C. Pascard, Phytochemistry 1986, 26, 221.
- [4] E. Aurada, J. Jurenitsch, W. Kubelka, Sci. Pharm. 1982, 50, 331.
- [5] P. K. Chan, Biochem. Pharmacol. 2007, 73, 341.
- [6] P. Wang, S. Ownby, Z. Z. Zhang, W. Yuan, S. Y. Li, Bioorg. Med. Chem. Lett. 2010, 20, 2790.
- [7] L. Voutquenne, C. Kokougan, C. Lavaud, I. Pouny, M. Litaudon, Phytochemistry 2002, 59, 825.
- [8] Z. L. Li, X. Li, L. H. Li, N. Li, M. Yu, D. L. Meng, Planta Med. 2005, 71, 1068.
- [9] P. W. Khong, K. G. Lewis, Aust. J. Chem. 1976, 29, 1351.
- [10] Y. L. Liu, L. H. Tang, Z. Q. Liang, B. G. You, S. L. Yang, J. Ethnopharmacol. 2010, 131, 1.

Received June 30, 2012